
Macintosh Technical Notes

New Technical Notes

Developer Support

®Macintosh

Font Manager Q&As
Text M.TX.FontMgr.Q&As

Revised by: Developer Support Center October 1992
Written by: Developer Support Center October 1990

This Technical Note contains a collection of Q&As relating to a specific topic—questions
you’ve sent the Developer Support Center (DSC) along with answers from the DSC
engineers. While DSC engineers have checked the Q&A content for accuracy, the Q&A
Technical Notes don’t have the editing and organization of other Technical Notes. The Q&A
function is to get new technical information and updates to you quickly, saving the polish for
when the information migrates into reference manuals.

Q&As are now included with Technical Notes to make access to technical updates easier for
you. If you have comments or suggestions about Q&A content or distribution, please let us
know by sending an AppleLink to DEVFEEDBACK. Apple Partners may send technical
questions about Q&A content to DEVSUPPORT for resolution.

New Q&As and Q&As revised this month are marked with a bar in the side margin.

Chicago Control-Q prints propeller or clover symbol
Written: 7/4/90
Last reviewed: 8/1/92

How do I get the character that represents the clover used for command-key equivalents in
documents and in menus?

This key is documented in the Apple Style Guide, which is available on the latest Developer
CD Series disc as well as from APDA. One little feature of Key Caps which is not widely
known is the Control key (not the Command or Option keys). Pressing the Control key in
Chicago shows that Control-Q in Chicago maps to the propeller symbol for which you
search. Control-Q generates the character code 17; the standard Macintosh character set (see
Inside Macintosh Volume VI, page 12-5) specifies this symbol for it.

Determining Macintosh system font size
Written: 2/11/91
Developer Support Center October 1992

Macintosh Technical Notes

Last reviewed: 8/1/92

How does a program determine the default system font size?

Developer Support Center October 1992

Macintosh Technical Notes

If you want to know the default system font size, use the GetDefFontSize call (Inside
Macintosh Volume V, page 314). This call will return the true default system font size. On all
Roman systems the sysFontSize low-memory global is always zero by default; this means
that it’s actually 12. Don’t ask me why they did this, but it’s true, so you should use the call
if you want a painless method of obtaining this information. Try to avoid reading the global
directly.

FScaleDisable and Macintosh screen rendering
Written: 6/4/91
Last reviewed: 8/1/92

What is the current interface guideline on font scaling? Should we set FScaleDisable to true
or false for screen rendering? I believe the old guideline was to set it to true (thus disabling
font scaling) so that if you have a 23 pt screen font you will see 12 pt glyphs with 23 pt
widths. We want performance on Apple’s low-end machines, and we don’t want to make this
a user preference.

Most applications now set FScaleDisable to false all the time. If you are worried about the
speed degradation in your application when running on slower Macintosh systems, you
could have your software identify which Mac it is running on using Gestalt, SysEnvirons,
etc., and then set FScaleDisable to true only on the slow machines. From the purely interface
point of view, “what-you-see-is-what-you-get” is best, if processor speed allows it.

With TrueType there is no issue, since FScaleDisable doesn’t have any effect on an outline
font.

Macintosh double-byte character encoding
Written: 8/5/91
Last reviewed: 8/1/92

When will System 7 and TrueType be able to support a larger character encoding vector than
the current 256 characters? Is this something I could do now?

System 7 does not have double-byte character encoding support now. In the future, Apple
will use the two-byte UNICODE standard for its operating systems. However, such a change
will be huge and therefore will not be available in the near future.

Ever since 6.0.2, KanjiTalk has had double-byte encoding, so you can use the Japanese
system at this time. The system which allows you to do this is called shift-JIS (Japanese
Input System). The mappings are on the current Developer CD in the Kanji folder.

Developer Support Center October 1992

Macintosh Technical Notes

'FOND' resource features subject to change
Written: 6/17/91
Last reviewed: 8/1/92

Which 'FOND' features are subject to change, and what parts can I rely on?

Developer Support Center October 1992

Macintosh Technical Notes

'FOND' features not documented in Inside Macintosh, Macintosh Technical Notes, or
develop are subject to change. That’s the official word.

Five font style-mapping table styles
Written: 6/17/91
Last reviewed: 8/1/92

Why is “47” the bounds of the indexes’ array in the StyleTable?

The style-mapping tables, which are used for mapping of a font style to a particular font for
printing, have only five possible styles, unlike the six screen styles (underline is omitted,
since a laser printer just explicitly draws a line under the string—it doesn’t need a special
font for that). You can have any combination of these five styles, EXCEPT that you can’t
have “Condense” and “Extend” at the same time (Condensed Extended wouldn’t make a
whole lot of sense). Thus you get (combinatorics come back to haunt us) 48 possible unique
styles to map to.

X-Ref:
Snippet “StyleMap” on the Developer CD.
LaserWriter Reference, Chapter 2, “Working with Fonts,” (Addison-Wesley; APDA
#M7073, $19.95).

System 7 and modified fonts
Written: 6/21/91
Last reviewed: 8/1/92

We ship modified versions of the Chicago and Geneva fonts and their FONDs in our
application’s resource fork. With System 6, when we ask for font 0 or font 3, we get our
modified fonts in windows, buttons, menus and dialogs, but not with System 7. Is there a
new way to tell System 7 to use my version of Chicago 12 to display all system related stuff?

What’s happened is that the system software is being much more strict about whose
“Chicago” it uses for menus and dialogs. The Menu and Control Managers now only look at
the system file for the Chicago they use.

There are a couple of ways to get around this: First, you can try patching DrawString right
before calling MenuSelect in your program. The patch would select your Chicago and then
jump to the standard DrawString. After MenuSelect, remove the patch. The disadvantage of
this method is that, if a future system software release doesn’t use DrawString for drawing
menus, the patch would cease to have any effect.

Developer Support Center October 1992

Macintosh Technical Notes

A better solution is to write your own menu and control definition code—in other words,
your own custom MDEF and CDEFs. The way you typically do this is to get a copy of the
standard Macintosh system’s MDEF or CDEF, and alter it to your specifications. In your
case, this would be merely selecting your font instead of the system font. Name your font
something other than Chicago and just select that font by name in the menu or control’s draw
routine. The Control and Menu Manager chapters in Inside Macintosh Volume I have more
information on writing custom definitions. There is only one problem with this right now:
While the System 6 MDEF and CDEF are available on AppleLink, the System 7 versions are
not available yet, although they will be soon.

Developer Support Center October 1992

Macintosh Technical Notes

A note on the use of Chicago in your application: As the June 1991 edition of the Macintosh
Technical Note “Font Family Numbers” mentions, fonts are copyrighted material. Apple
owns the Chicago font and typeface, so be sure you check into licensing issues before
releasing any version, altered or unaltered, with your application.

Spanish typographic measurements
Written: 12/10/91
Last reviewed: 8/1/92

What typographical measurement issues must be considered for Spanish systems? Do the
Spanish specify type in ciceros and didots instead of points?

If typesetting is done in Spain with computers, U.S. standards generally are used. It is only
when typesetting is done the old-fashioned way that you’ll see different measurements.

Paper sizes are different. In Spain DIN-44 (210 x 297), DIN-A3 (420 x 297) and “folio”
(215 x 315) are used. As always, you’ll be working with 72 dpi for the screen (and any time
you use QuickDraw) but something different on paper, so you’ll need to use PrGeneral and
image the stuff yourself to a resolution that allows you control over your imaging for
printing. This is detailed in the article, “Meet PrGeneral, the Trap That Makes the Most of
the Printing Manager,” in issue #3 of develop.

Here are the measurements used in Spain:

• Decimal point (Didot) (0.3759 mm)
• Millimeter
• Cicero (12 decimal points)
• Centimeter
• Inches

SetOutlinePreferred = TRUE or not?
Written: 12/2/91
Last reviewed: 8/1/92

My application calls SetOutlinePreferred so outline fonts are used if both bitmapped and
TrueType fonts are in the system. It was reported to me, however, that some international
TrueType fonts in particular look really bad at small point sizes on the screen. Should I avoid
calling this function?

SetOutlinePreferred is best used as a user-selectable option. Along the same lines, you might

Developer Support Center October 1992

Macintosh Technical Notes

want to include the SetPreserveGlyph call (Inside Macintosh Volume VI, page 12-21), again,
as a user-selectable option.

Currently, as you know, the default for outlinePreferred is FALSE; this is for compatibility
reasons (existing documents don’t get reflowed if the bitmap fonts are still around) and for
esthetic and performance reasons (users are free to maintain bitmap fonts in the smaller point
sizes if the TrueType version is not satisfying for small sizes, or too slow). On the other
hand, as soon as a bitmap font is *un*available for a requested point size, and an outline font
is present, the outline font is used even with outlinePreferred = FALSE. Setting
outlinePreferred

Developer Support Center October 1992

Macintosh Technical Notes

= TRUE makes a difference only for point sizes where a bitmap font strike is present along
with a 'sfnt' in the same family/style.

TrueType fonts might be preferable even for small point sizes if linearly scaled character
widths are more important than screen rendering: If the main purpose of a program is
preprint processing for a high-resolution output device, then outlinePreferred = TRUE may
give better line layout results on the printer, at the price of “not so great” type rendering on a
72 dpi screen. (An example for the conflict between linearly scaling TrueType and non-
linearly scaled bitmap fonts is Helvetica: StringWidth('Lilli') returns 19 for the 12-point
bitmap font, and 15 for the 13-point size from TrueType!)

All this boils down to the recommendation stated initially: The user should be given the
flexibility to decide whether to use the existing bitmaps (using TrueType only for bigger
point sizes and high-resolution printers), or to go with TrueType even if the result on the
screen is not optimal. (By the way, it’s likely that TrueType development will substantially
reduce this conflict in the future.)

FontRec fontType field and determining monospaced fonts
Written: 1/13/92
Last reviewed: 8/1/92

How can I create a menu that contains only fixed width fonts? The FontRec record’s
fontType field doesn’t correctly tell me if the font is fixed width as Inside Macintosh Volume
V says it should. All system fonts appear to have the same fontType regardless of whether
they are fixed or proportional. Currently I test if the width of the characters “m” and “i” are
equal and if they are, I consider the font to be fixed width. Is there an easier (and faster!)
way?

The Font Manager documentation is not explicit enough about the fact that bit 13 (0x2000)
of the fontType field is basically useless. Neither does the Font Manager check the setting of
this bit, nor does QuickDraw (or any printer driver). As you observed, monospaced fonts like
Monaco or Courier don’t have the bit set; so the meaning of this bit is just perverted to
nonsense—sorry! In addition, the fontType field only is available for 'FONT's and 'NFNT's;
it does not exist in 'sfnt's, and you would have to check separately for the resource type of
the font.

Your idea of comparing the widths of “m” and “i” (or any other characters which are
extremely unlikely to have the same widths in a proportionally spaced font) is indeed the
only reasonable way of figuring out if a font is monospaced.

Getting global width table for a font specification
Written: 4/22/92

Developer Support Center October 1992

Macintosh Technical Notes

Last reviewed: 8/1/92

What’s the fastest way to get the width table for a given font? FontMetrics is too slow,
especially in color. Is there any other call that will get the global width table set up correctly?
That is all that we need from the call to FontMetrics.

FontMetrics does not have much overhead in setting up the width table. It does a dummy
DrawChar(' '); this is very rapidly transformed into a call to StdText, and StdText
immediately calls StdTxMeas. The first thing StdTxMeas does is to set up the input
parameters for a

Developer Support Center October 1992

Macintosh Technical Notes

FMSwapFont call and call it. FMSwapFont is the heart of the Font Manager, and does all the
work. It comes back with the FMOutput record, the font strike, and the width table. From
there, FontMetrics derives the values it needs to bring back.

You probably wouldn’t save much more than 1/1000th of a second if, instead of calling
FontMetrics, you called FMSwapFont explicitly yourself—our only alternative suggestion.

The Font Manager does quite a lot of caching (up to 12 width tables), and managing the
cache takes some cycles, too. If there is nothing in the cache corresponding to the font
request, the cache makes the call even slower than it would be without cache.

The next source of overhead is the Resource Manager. Looking for a specific font involves
going through the whole resource chain first for the FOND (if none is found, the search
restarts for a FONT), and then, based on the FOND’s font association table, for a NFNT or
'sfnt'. If no NFNT is found, the search restarts for a FONT, always through the whole
resource chain. For a huge resource fork like in the System file (and, maybe, also in your
application), the time spent in the Resource Manager is not negligable—in particular, if you
have add-ons in your system (such as INITs or 'cdev's) that patch out Resource Manager
calls, maybe several times, and usually slow it down considerably!

Even in case this hurdle is overcome swiftly (after all, the Resource Manager has its own
caching scheme for optimization), the next step necessarily takes some time, and, as you
have observed, especially on a color system: It consists of actually providing the bitmap for
the font strike. If the screen depth is >1, this involves creating “synthetic” fonts for the
correct screen depth, to optimize text drawing. Also, if the font is an outline font, the first
time a font strike has to be rasterized is quite costly in terms of machine cycles.

Finally, the width table can be created; and, because of the scaling factors involved, this
requires 256 times some arithmetic which is known never to be fast enough.

All this certainly gives us an understanding for the time it takes FMSwapFont (FontMetrics)
to get the job done, but it does not solve your problem.

Depending on how predictable the usage of fonts and width tables in your application is, you
might consider building kind of a database of width tables beforehand, or along the way, and
use this information directly from within your application. There is no shortcut at all through
the Resource Manager to get at the font resources, and there is no shortcut within
FMSwapFont, like not building the font bitmaps. (To the best of my knowledge, the needbits
field in the FMInput record does *not* have this effect.) The only obvious way to get width
tables faster is to keep them around, and to extend manually the capacity of the Font
Manager’s cache of width tables.

SetFractEnable and recalculating width tables
Written: 5/5/92

Developer Support Center October 1992

Macintosh Technical Notes

Last reviewed: 8/1/92

Calling SetFractEnable seems to force the width tables to be recalculated regardless of the
setting of the low-memory global FractEnable. We’re calling this routine at a central entry
point for any document, as it’s a document by document attribute. We then unconditionally
call SetFractEnable(false) on exit back to the event loop, to be nice to other applications.
Calling SetFractEnable(false), seems to trigger the recalculation even though FractEnable is
false. What’s the best way to get around this?

Developer Support Center October 1992

Macintosh Technical Notes

Your observation is correct. The SetFractEnable call stuffs the boolean parameter (as a single
byte) into the low-memory global $BF4 and indiscriminately invalidates the cached width
table by setting $B4C (LastSpExtra) to -1 (LongWord = Fixed). Obviously, it was not
anticipated that SetFractEnable could be called quite regularly with a parameter that often
does not change the previous setting. (By the way, the same observation applies to the
SetFScaleDisable call).

In your case, you may want to replace the SetFractEnable call by your own test of the
boolean (8-bit) in $BF4 (FractEnable), and call SetFractEnable only if the parameter passed
is different from the value stored in $BF4. Note that Inside Macintosh Volume IV (page 32)
explicitly allows you to hack the $BF4 location directly, so it’s unlikely there are any future
compatibility problems if you go your own way around the original SetFractEnable. The
only additional information you need is what’s mentioned above: The Font Manager always
checks $B4C (LastSpExtra) for -1 before doing anything with the global width table; if it
finds ($B4C) = LongInt(-1), it painfully rebuilds the width table.

Another comment: You do not need to think of other applications when resetting
FractEnable; in a context switch to another application, all low-memory globals are swapped
anyway. Still, the above optimization of SetFractEnable probably is useful even when you
don’t call it any more systematically on exit to the event loop.

Corrupted Macintosh font or font suitcase criteria
Written: 6/19/92
Last reviewed: 9/15/92

I would like to be able to detect whether a font suitcase is corrupted when it is opened and
whether any of the fonts in it are corrupted before any of the fonts are used. I know that the
Finder is able to do this, and I was wondering if Apple gives out this information. My
program will only run under System 7.0 if that helps. Any information that you can give me
would be greatly appreciated.

The Finder and the type architecture are living things; the definition of what is and is not a
damaged suitcase can change from release to release of system software. However, any of
the following conditions makes System 7.0 report the suitcase as “damaged”:

• More than eight FONDs reference the same font.

• A new stand-alone object can’t be created for a font icon. The usual cause of this is that
two FONDs have the same name for the first 31 characters, and the Finder thinks there’s
already an icon in that window with the same name. (Two icons in the same directory with
the same name is a sign of damage.)

Developer Support Center October 1992

Macintosh Technical Notes

• There must be at least one font association table entry, and the table can’t go past the
logical end of the resource.

• The first resource name in the map must not be zero-length (which is a test for some older
third-party corrupted suitcases).

• The FOND must have a name.

Developer Support Center October 1992

Macintosh Technical Notes

• The FOND must have a valid character range—the first character has to be less than the
last character—unless it is a "dummy" FOND (created on the fly for old standalone FONTs;
in this case, last character = 0).

• All the font association table entries must be in ascending point size order.

• No two font association table entries may reference exactly the same point size and style.

• The offsets to the width table, kerning table and style mapping table must be valid or zero.

• The font ID must not be zero unless it’s actually the system font.

We can’t promise this is every reason the Finder would report a suitcase as damaged
(especially given the second step), but this is most of them.

Developer Support Center October 1992

